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Abstract

Pursuant to the authors’ previous chaotic-dynamical model for random digits of fun-
damental constants [5], we investigate a complementary, statistical picture in which pseu-
dorandom number generators (PRNGs) are central. Some rigorous results are achieved:
We establish b-normality for constants of the form >, 1/(b™ic™) for certain sequences
(m;), (n;) of integers. This work unifies and extends previously known classes of explicit
normals. We prove that for coprime b,c > 1 the constant oy, = >, 23 1/(nb") is
b-normal, thus generalizing the Stoneham class of normals [49]. Our approach also re-
proves b-normality for the Korobov class [34] (.4, for which the summation index n
above runs instead over powers ¢, ¢, ¢, ... with d > 1. Eventually we describe an un-
countable class of explicit normals that succumb to the PRNG approach. Numbers of the
«, 3 classes share with fundamental constants such as 7, log2 the property that isolated
digits can be directly calculated, but for these new classes such computation tends to be
surprisingly rapid. For example, we find that the googol-th (i.e. 10'%-th) binary bit of
ag3 is 0. We also present a collection of other results—such as digit-density results and
irrationality proofs based on PRNG ideas—for various special numbers.
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1. Introduction

We call a real number b-normal if, qualitatively speaking, its base-b digits are “truly
random.” For example, in the decimal expansion of a number that is 10-normal, the digit
7 must appear 1/10 of the time, the string 783 must appear 1/1000 of the time, and so
on. It is remarkable that in spite of the elegance of the classical notion of normality,
and the sobering fact that almost all real numbers are absolutely normal (meaning b-
normal for every b = 2,3,...), proofs of normality for fundamental constants such as
log2, 7, ¢(3) and v/2 remain elusive. In [5] we proposed a general “Hypothesis A” that
connects normality theory with a certain aspect of chaotic dynamics. In a subsequent
work, J. Lagarias [37] provided some additional interesting viewpoints and analyses using
the dynamical approach.

There is a fascinating historical thread in normality theory, from “artificial” or “un-
natural” normals to “natural” normals. By the adjective “artificial” or “unnatural”, we
mean that a number’s construction is relatively nonalgebraic and nonanalytic, in contrast
to a “natural” normal number, which is given by some reasonably analytic formulation,
such as a conveniently defined series. Such talk is of course qualitative and heuristic; yet,
in the last few decades we have seen numbers, provably normal to some base, and via
elegant series descriptions looking more like fundamental constants.

Since the 1930s we have known of artificial constructions, such as the 10-normal, binary
Champernowne constant [16]:

Cio = 0.(1)(2)B)(A)G)(6)(7)(8)(9)(10)(11)(12) - - -,

(or the 2-normal Cy = 0.(1)(10)(11)(100)(101)(110)(111) - - -5), with the (-) notation mean-
ing the expansion is constructed via mere concatenation of registers.

The migration toward more natural constructions was intensified by the work of Ko-
robov and Stoneham from the 1950s into the 1990s, with Levin [38] and others working
even more recently on statistical properties of normals. Those investigations were rooted
in the recurring-decimal constructions of Good [26] (see, e.g., the interesting historical
discussions in [52]). Let us now highlight what we shall call Korobov and Stoneham
classes of normals, referring further details to the works of those authors [53] [48] [50] [51]
[52] [33] [34] [35]. Although Korobov achieved normal number construction in the 1950s
by parlaying Good’s ideas [52], and Stoneham gave some explicit—yet rather recondite—
series construction of normals in 1970 [48], an elegant and easily described representative
class of “natural” normals was exhibited in 1973 by Stoneham [49]. We shall denote these
Stoneham numbers by {a.}, with b,¢ > 1 coprime:

1 > 1
Go = DL g = 2

n=ck>1

Stoneham proved that as. is b-normal whenever c is an odd prime and b is a primitive
root of ¢>. We shall in the present paper generalize this class of normals by removing
Stoneham’s restrictions, demanding only coprime b,c¢ > 1. Another class of normals we



shall be able to cover with the present techniques is the Korobov class whose members
we denote (for b,c¢ > 1 again coprime and d > 1):

1
Bred = > g

2 43
n=c,c?,cd* cd°,..

Korobov showed in 1990, via a clever combinatorial argument, that (.4 is b-normal [34].
We shall reprove this result, and do so with a general method that encompasses also the
Stoneham class and generalizations. It should be remarked that these pioneers were not
merely concerned with the aforementioned thread from artificial to natural constructions.
For example, Stoneham used the representations

a2 )

d odd
1

r=a I (1-5)
d odd >1

to creatively demonstrate (for either constant) that for a fized number of multiplicands,
certain digit strings must appear in the resulting rational period [52]. Unfortunately this
does not on the face of it lead to rigorous results about the exact constants w and /2. (It
is also puzzling, in that, whereas 7 falls squarely under the rubric of the present authors’
Hypothesis A [5], the constant v/2 does not, and one can only wonder whether the two
constants should ultimately be treated in the same fashion as regards normality.) As for
Korobov, his work actually included explicit continued fractions for the 3.4 and related
normals. For example,
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with the precise algorithm for the fraction’s ensuing elements given in the reference [34]
(and note that the fraction elements soon grow extremely rapidly, the 11-th element being
26399 _ 1)

In the present paper the way we generalize and extend such normality classes is to
adopt a complementary viewpoint to Hypothesis A, focusing upon pseudorandom number
generators (PRNGs), with relevant analyses of these PRNGs carried out via exponential-
sum and other number-theoretical techniques. One example of success along this pathway
is the establishment of large (indeed, uncountable) classes of “natural” normal numbers.
Looking longingly at the fundamental constants
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whose normality—for any b > 2 and to any base, b or not—remains to this day unresolved,
we use PRNG concepts to prove b-normality for sums involving sparse filtering of the
logarithms’ summation indices. Of specific interest to us are sums

1
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for certain integer pairs b, ¢ and sequences m = (m;),n = (n;) that enjoy certain growth
properties. Note that our definition of Stoneham numbers ay, . is the case n; = i, m; = ¢,
while the Korobov numbers (3, .4 arise from sequence definitions n; = d’, m; = ¢".

It is tantalizing that Stoneham and Korobov numbers both involve restrictions on
the summation indices in the aforementioned logarithmic expansion, in the sense that
numbers of either class enjoy the general form Y, ¢ 1/(nb") for some subset S C Z*.
Our generalizations include the sums

Z 1

ne=cf (1) of(2) nb"

for suitable integer-valued functions f; so again we have a restriction of a logarithmic sum
to a sparse set of indices.

In addition to the normality theorems applicable to the restricted sums mentioned
above, we present a collection of additional results on irrationality and b-density (see
ensuing definitions), these side results having arisen during our research into the PRNG
connection.

2. Nomenclature and fundamentals

We first give some necessary nomenclature relevant to base-b expansions. For a real
number o € [0,1) we shall assume uniqueness of base-b digits, b an integer > 2; i.e.
a = 0.b1by - - - with each b; € [0,b—1], with a certain termination rule to avoid infinite tails
of digit values b— 1. One way to state the rule is simply to define b; = |b’«]; another way
is to convert a trailing tail of consecutive digits of value b—1, as in 0.4999 - - - — 0.5000 - - -
for base b = 10. Next, denote by {a}, or a mod 1, the fractional part of «, and denote
by ||c|| the closer of the absolute distances of & mod 1 to the interval endpoints 0, 1; i.e.
||a|| = min({a}, 1 —{a}). Denote by (a;,) the ordered sequence of elements oy, g, . ... Of
interest will be sequences (ay,) such that ({a,}) is equidistributed in [0, 1), meaning that
any subinterval [u,v) C [0, 1) is visited by {«,} for a (properly defined) limiting fraction
(v — u) of the n indices; i.e., the members of the sequence fall in a “fair” manner. We
sometimes consider a weaker condition that ({a,}) be merely dense in [0, 1), noting that
equidistributed implies dense.

Armed with the above nomenclature, we paraphrase from [5] and references [36] [28]
[44] [33] in the form of a collective definition:

Definition 2.1 (Collection) The following pertain to real numbers a and sequences of
real numbers (a,, € [0,1) : n = 0,1,2,...). For any base b = 2,3,4... we assume, as
enunciated above, a unique base-b expansion of whatever real number is in question.

1. « is said to be b-dense iff in the base-b expansion of v every possible finite string of
consecutive digits appears.

2. « is said to be b-normal iff in the base-b expansion of « every string of k base-b digits
appears with (well-defined) limiting frequency 1/b*. A number that is b-normal for
every b = 2,3,4,... is said to be absolutely normal. (This definition of normality
differs from, but is provably equivalent to, other historical definitions [28] [44].)
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3.

The discrepancy of (), essentially a measure of unevenness of the distribution in
[0,1) of the first N sequence elements, is defined (when the sequence has at least N
elements) as

Dy = s #(n < N :a, € [a,b))
0<a<b<1 N

—(b—a)|.

One may also speak of a number a’s b-discrepancy, as the discrepancy of the sequence
(b"«v), which sequence being relevant to the study of b-normality.

The gap-maximum of (ay,), the largest gap “around the mod-1 circle” of the first NV
sequence elements, is defined (when the sequence has at least N elements) as

GN - :Sl’la ||ﬁ(k+1)modN_ﬁkmodN||7

X
k=0,..,N—1

where ([3,) is a sorted (either in decreasing or increasing order) version of the first
N elements of (a,, mod 1).

On the basis of such definition we next give a collection of known results in regard to
b-dense and b-normal numbers:

Theorem 2.2 (Collection) In the following we consider real numbers and sequences as
in Definition 2.1. For any base b = 2,3,4 ... we assume, as enunciated above, a unique
base-b expansion of whatever number in question.

1.

If o is b-normal then « is b-dense.

Proof. If every finite string appears with well-defined, fair frequency, then it
appears perforce.

. If, for some b, a is b-dense then « is irrational.

Proof. The base-b expansion of any rational is ultimately periodic, which means
some finite digit strings never appear.

Almost all real numbers in [0, 1) are absolutely normal (the set of non-absolutely-
normal numbers is null).

Proof. See [36], p. 71, Corollary 8.2, [28].

« is b-dense iff the sequence ({b"a}) is dense.
Proof. See [5].

« is b-normal iff the sequence ({b"a}) is equidistributed.
Proof. See [36], p. 70, Theorem 8.1.



6. Let m # k. Then « is b¥-normal iff v is b™-normal.
Proof. See [36], p. 72, Theorem 8.2.

7. Let q,r be rational, ¢ # 0. If « is b-normal then so is gqa + r, while if ¢ = b? is an
integer then « is also c-normal.

Proof. The b-normality of qa is a consequence of the Birkoff ergodic theorem —
see [3]; see also [36], p. 77, Exercise 8.9. For the additive (4r) part, see end of the
present section. For the c-normality see [36], p. 77, Exercise 8.5.

8. (Weyl criterion) A sequence ({ay,}) is equidistributed iff for every integer h # 0
N-1

Z 627riho¢n — O(N)

n=0

Proof. See [36], p. 7, Theorem 2.1.

9. (Erd6s-Turan discrepancy bound) There exists an absolute constant C' such that
for any positive integer m the discrepancy of any sequence ({a,}) satisfies (again,
it is assumed that the sequence has at least N elements):

)

Proof. See [36], pp. 112-113, where an even stronger Theorem 2.5 is given.

1 1N 27rzha
Dy < C ZENZ "

10. Assume (x,) is equidistributed (dense). If y, — ¢, where ¢ is constant, then ({z, +
Yn}) is likewise equidistributed (dense). Also, for any nonzero integer d, ({dx,}) is
equidistributed (dense).

Proof.  For normality (density) of ({z, + y»}) see [5] [36], Exercise 2.11 (one
may start with the observation that (x, + y,) = (x, +¢) + (y, — ¢) and ({z, +¢})
is equidistributed iff (z,,) is). The equidistribution of ({dz,}) follows immediately
from parts 5,8 above. As for density of ({dz,}), one has {dz,} = {d{z,}} for any
integer d, and the density property is invariant under any dilation of the mod-1
circle, by any real number of magnitude > 1.

11. Given a number «, define the sequence (a,) = ({b"a}). Then « is b-dense iff
th—»oo GN =0.

Proof. The only-if is immediate. Assume, then, the vanishing limit, in which case
for any € > 0 and any point in [0,1) some sequence member can be found to lie
within €/2 of said point, hence we have density.



12. Consider @ and the corresponding sequence (c,) of the previous item. Then « is
b-normal iff limy_,.o Dy = 0.

Proof. See [36], p. 89, Theorem 1.1.

Some of the results in the above collection are simple, some are difficult; the aforemen-
tioned references reveal the difficulty spectrum. This collective Theorem 2.2 is a starting
point for many interdisciplinary directions. Of special interest in the present treatment
is the interplay between normality and equidistribution.

We focus first on the celebrated Weyl result, Theorem 2.2(8). Observe the little-
o notation, essentially saying that the relevant complex vectors will on average exhibit
significant cancellation. An immediate textbook application of the Weyl theorem is to
show that for any irrational «, the sequence ({na}) is equidistributed. Such elementary
forays are of little help in normality studies, because we need to contemplate not multiples
na but the rapidly diverging constructs 0" a.

We shall be able to put the Weyl theorem to some use in the present treatment. For
the moment, it is instructive to look at one nontrivial implication of Theorem 2.2(8).
We selected the following example application of the Weyl sum to foreshadow several
important elements of our eventual analyses. With Theorem 2.2(5,6,8) we can prove part
of Theorem 2.2(7), namely: If o is b-normal and r is rational then o+ r is b-normal. Let
r = p/q in lowest terms. The sequence of integers (b™ mod q) is eventually periodic, say
with period T. Thus for some fixed integer ¢ and any integer n we have 0"’ mod ¢ = c.
Next we develop an exponential sum, assuming nonzero h:

N-1 N-1
T ; T
S = E :627rzhb (atp/q) _ eZTrzhcp/q 2 :627r1hb a

Now a chain of logic finishes the argument: « is b-normal so it is also b”-normal by
Theorem 2.2(6). But this implies S = e2™"?/19(N) = o(N) so that a + p/q is b*-normal,
and so by Theorem 2.2(6) is thus b-normal.

3. Pseudorandom number generators (PRNGs)

We consider PRNGs under the iteration
x, = (brp_1+r,) modl,

which is a familiar congruential form, except that the perturbation sequence r, is not
yet specified (in a conventional linear-congruential PRNG this perturbation is constant).
Much of the present work is motivated by the following hypothesis from [5].

Hypothesis A (Bailey—Crandall) If the perturbation r, = p(n)/q(n), a non-singular
rational-polynomial function with degq > degp > 0, then (z,,) is either equidistributed
or has a finite attractor.

It is unknown whether this hypothesis be true, however a motivation is this: The normality
of many fundamental constants believed to be normal would follow from Hypothesis A. Let



us now posit an unconditional theorem that leads to both conditional and unconditional
normality results:

Theorem 3.1 (Unconditional) Associate a real number

>r
n
pe
n=1
where lim,, ., 7, = ¢, a constant, with a PRNG sequence (z,) starting o = 0 and
iterating

z, = (brp_1+r,) modl.

Then (x,,) is equidistributed (dense) iff 3 is b-normal (b-dense).
Proof. Write

o0

bdﬂ—xd = Zbdinrn—(bd71T1+bd727’2+"'+7’d)
n=1
Td+1 Td+2 ,
D e TS

with ¢ a constant. Therefore by Theorem 2.2(10), (x,) equidistributed (dense) implies
(3 is b-normal (b-dense). Now assume b-normality (b-density). Then (z4) is the sequence
({v¢3}) plus a sequence that approaches constant, and again by Theorem 2.2(10) (z4) is
equidistributed (dense).

In our previous work [5] this kind of theorem led to the following (conditional) result:

Theorem 3.2 (Conditional) On Hypothesis A, each of the constants

™, log2, ((3)
is 2-normal. Also, on Hypothesis A, if ((5) be irrational then it likewise is 2-normal.
Theorem 3.2 works, of course, because the indicated fundamental constants admit of

polylogarithm-like expansions of the form " 7,0~ where r,, is rational-polynomial. The

canonical example is
> 1
log2 = —
n2n

and 2-normality of log2 comes down to the question of whether (for zy = 0)
1
T, = <2xn1 + —) mod 1
n

gives rise to an equidistributed (z,). The main results of the present paper will be to
establish equidistribution for generators reminiscent of, but not quite the same as, this
one for log 2.



With a view to ultimate achievement of normality results, let us take a brief tour of
some other (not rational-polynomial) perturbation functions. The iteration

T, = <2$n1 + WL_TL> mod 1

is associated with the constant
n
6 = Z F7

n>1

which is 2-dense but not 2-normal, as we establish later. Another rather peculiar pertur-
bation, for base b = 4, is
1 4dn+1

= (2n)4n +2°

If the associated PRNG is equidistributed, then 1/4/e is 2-normal. Likewise, and again
for base b = 4, a result of equidistribution for a perturbation
(2n—=3)!"  (2n—3)(2n—5)---3-1

n!  nn—-1)n-2)---2-1

r, =

would prove that v/2 is 4-normal, hence 2-normal. It might have seemed on the face of it
that the decay rate of the perturbation r, has something to do with normality. But the
conditional results on Hypothesis A involve only polynomial-decay perturbations, while
the r, assignments immediately above involve rapid, factorial decay. On the other hand
there are very slowly-decaying perturbation functions for which one still embraces the
likelihood of normality. For example, the mysterious Euler constant + can be associated
with the base b = 2 and perturbation function r, that decays like n='/2 (see Section 5
and [5]).

In a spirit of statistical investigation let us revisit once again the canonical case of
the number § = log2 and base b = 2. For the purpose of discussion we write out for

d=1,2,3,... an iterate as assembled from d explicit terms:
29=1 mod 1 N 2972 mod 2 N 24=3 mod 3 P 2 N 1 i1
Ty = .t ——+ = | mod 1.
¢ 1 2 3 d—1 " d

and remind ourselves that
2d log 2 = Tq+ td,

where t; is a “tail” term that vanishes in the limit, but is also a kind of source for
subsequent generator iterates. (Note that the first term always vanishes modulo 1; we
include that term for clarity.) One can think of such a PRNG as a “cascaded” random
number generator, in which distinct generators (22=™ mod m)/m are added together, with
the number of moduli m steadily diverging.

There are difficult aspects of the PRNG analysis for log 2. First, the theory of cascaded
PRNGs appears difficult; even the class of generators with fized numbers of summands are



not completely understood. Second, even if we succeeded in some form of equidistribution
theorem for cascaded generators, we still have the problem that the tail ¢4 is to be added
into the final segment of the generator that has just been started with its power-of-two
numerators.

These difficulties may be insurmountable. Nonetheless, there are two separate ap-
proaches to altering the log2 PRNG such that density and normality results accrue.
These separate modifications are:

e Arrange for some kind of synchronization, in which iterates change number-theoretic
character on the basis of a “kicking” pertubation that emerges only at certain iter-
ates.

e Arrange somehow for the tail ¢; to be so very small that meaningful statistical
properties of the first d + d’ generator terms are realized before t4 is significantly
magnified via d’ multiplies by b.

We shall be able to apply both of these qualitative alterations. For the first case
(kicking/synchronization) we shall finally achieve normality proofs. For the second kind
of alteration (small tail) we shall be able to effect some proofs on density and irrationality.

4. PRNGs admitting of normality proofs

Herein we exhibit a class of generators—we shall call them (b, ¢, m,n)-PRNGs, for
which normality proofs can be achieved due to the special synchronization such generators
enjoy. We begin with some necessary nomenclature (we are indebted to C. Pomerance for
his expertise, ideas and helpful communications on nontrivial arithmetic modulo prime
powers).

Definition 4.1 We define a (b, ¢, m,n)-PRNG sequence x = (zg, x1,xs,...) for coprime
integers b, ¢ > 1 and strictly increasing sequences m = (0,my, ma,...),n = (0,n1,n9,...)
as follows: Set o = 0 and for k£ > 0 iterate:

xp = (brg_1+rg) mod 1,

with the perturbation given by
1

ch

T, =

with all other r, vanishing.

Knowing the parameters (b, c,m,n) determines the PRNG sequence z. The pertur-
bation is of the “kicking” variety, not happening unless the index j on r; is one of the
exponents m;. So the PRNG runs like so (we denote simply by = an equality on the

10



mod-1 circle):

Ty = 0,
)
x = 047, = 1
my = mp = o )
b
$m1+1 - o )
)
bmg—ml—l
Tmo—1 = o1 9
bmg—ml N bmz—mlcnz—nl -+ 1
xT = T =
mo o1 ma o2 ;

Y

and generally speaking,

_ Ok
Ty =
where ay is always coprime to ¢. It is evident that upon the 1/¢™ perturbation, the xy
commence an orbit of length px1 = my1 — my before the next perturbation. Therefore
the first NV terms of the sequence x can be envisioned like so. Observe mg = 0 and write
N =+ -+ px + J where J € [1, ug1] is the (possibly partial) length of the last
orbit. Then the first N terms of the (b, ¢, m,n)-PRNG sequence start with p; = m; zeros
and appear:

(zn) |y (0,0,...,0,
a1 bay b%a, bH2=1q,

cn ? cm’ e

I

cm
R
ar bay b2ak buk+1_1&k
cey
ar bag b2aK bJ_l(lK
cnK T ek eni T o )

We intend to argue, for certain parameter sets (b, ¢, m,n), that z = () is equidistributed.
For this we shall require some resulus from the number theory of power moduli, and an
important lemma on exponential sums. But first we give a general lemma useful for
estimating the discrepancy of an ordered union of finite subsequences. We use notation
reminiscent of that above for our (b, ¢, m,n)-PRNG sequences:

Lemma 4.2 For an infinite sequence (y,) built as an ordered union

((yOv cee ,yN1—1)7 (yN17 B 7?/N1+N2—1)7 o ))
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of subsequences of respective lengths N;, we have, for K >0, N = N+ No+---+ Ng+J
with J € [1, Nk.1], a discrepancy bound
N; J

Dy +—D
N NZ+ J>s

K
DNSZ N

=1

where Dy, are the respective discrepancies of the finite subsequences and D; is the dis-
crepancy of the partial sequence (Yn, 4. tng+;:J =0,1,2,...,J —1).

Proof. This is proved simply, in [36], p. 115, Theorem 2.6.

Now we can focus upon number-theoretical ideas, in order to bound subsequence
discrepancies. We shall make use of the following lemma which gives relations for the
order of numbers modulo a given modulus c. We denote the multiplicative order of y
modulo ¢ by ord(y, ¢) in what follows.

Lemma 4.3 Let b,c > 1 be coprime with ¢ having prime decomposition ¢ = pi' - - pts.
Let 71 (c) = ord(b, p1 - - - ps) and define 3; by:

piﬁi H b(,qul)n_l

where = 1 if ¢ is even and 77 is odd and b = 3(mod4); otherwise u = 0. Define further

cl(c) _ pgﬂn(tkﬂk)'
k=1
Then
c /
ord(b,c) = —7/,
1

where 7" = 27y if 4 =1 and ¢ = 0(mod4); otherwise 7/ = 7.

Proof. This lemma is proved in [35] and references therein.

These above order relations lead easily to a key lemma for our present treatment:

Lemma 4.4 Let b,c > 1 be coprime. Then there exist constants Ay, As such that for
sufficiently large n both of these conditions hold:

ord(b, ") = A",
ord(b, c")

cr(c?)

AQC”

Proof. The simple replacement ¢ — ¢" in Lemma 4.3 leaves the values of the 3; and 7
invariant. Thus for sufficiently large n, we have ¢;(¢") = [[p;* which is fixed, and both
large-n results follow.

12



Next we state a lemma on exponential sums:

Lemma 4.5 (Korobov, Niederreiter) For b,¢ > 1 coprime, with ¢;(c) defined as
in Lemma 4.3, and an integer h such that d = ged(h,c) < ¢/c1, and an integer J €

[1, ord(b, c)] we have
c c
< \/g (1 + log 8) )

Proof. The lemma is a direct corollary of results found in [33], e.g. p. 167, Lemma
32 for odd ¢, but (earlier) results of Korobov [35] are sufficiently general to cover all
composite c. See also [41], pp. 1004-1008. A highly readable proof of a similar result
and an elementary description of Niederreiter’s seminal work on the topic can be found
in [32], pp. 107-110. There are also enhancements on the theory of fractional parts for
the exponential function, as in [38] and references therein.

J-1 _

ihbJ
2 :627r1hb /c
Jj=0

Lemma 4.5 speaks to the distribution of powers of b modulo general ¢ coprime to
b. For our purposes we want to bound the magnitudes of exponential sums when the
modulus is a pure power, say ¢". (Incidentally we shall not be needing the dependence of
the lemma’s bound on d.) To this end we establish a theorem. Note that in this theorem
and thereafter, when we say constants exist we mean always positive constants depending
only on b, ¢, therefore independent of any running indices or growing powers. The idea of
the following theorem is not only to make the transition ¢ — ¢" for the exponential sum,
but also to unrestrict J:

Theorem 4.6 For b,c > 1 coprime, there exist constants A, B, D such that for any
positive integer J and sufficiently large n, the condition ged(H, ¢™) < Dc™ implies

J—-1

-
Z e2me /c

J=0

< B (Ac'”/2 + Jc_”/Q) log c".

Proof. Substituting ¢ — ¢" in Lemma 4.5, and using Lemma 4.4, we establish that for
sufficiently large n, the indicated exponential sum of the theorem, for any H as indicated,
is less in magnitude than a bound Ec¢™/? log ¢/, where F is constant, as long as J does not
exceed ord(b, ™). But for larger J we have at most [.J/ord(b, ¢™)] copies of the exponential
sum, and this ceiling is bounded by 1+ J/(A;c"), so the result follows.

We are aware that one could start from Theorem 4.6 and apply the Weyl criterion
(Theorem 2.2 (8)) to establish equidistribution for certain (b, c, m,n)-PRNG sequences.
We shall prove a little more, by virtue of discrepancy formulae. Again consider the first
N terms of the sequence x = (x,,), where N = No+ iy, +- - -+ pux +J, where J € [1, g 11]
as before, but k; is chosen so that the powers ¢ for any n > ny,_; are sufficiently large,
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as in Lemma 4.4 and Theorem 4.6, and so Ny is constant. Then the discrepancy of the
first J' elements of an orbit, namely of the subsequence

<ak bay, bzak bjllak>

e’ e’ oene 70T g

for k > ky is bounded according to the Erdés—Turan Theorem 2.2(9) like so:

)

where we are at liberty to chose M = | Dc™/? | with the constant D from Theorem 4.6, so
that the exponential sum appearing in the discrepancy bound is covered by said theorem—
recall a; and ¢ are coprime so that ged(hag, ™) = ged(h, ™) < h < M < Dc™. We
then get, for an orbit’s discrepancy for J’ terms of that orbit,

1 M1l

D < O, | — il el 2mihagbl /cmk
k41 1(M+hzlh J,jzoe

nk/2
Dy, < B (A’ 7 +c "k/2> log? ¢"
where A’, B' are constants, and we shall take J' = ;1 for each complete orbit and
observe J' = J in our last orbit (the orbit in which lies the last element zy_1). Now using
Lemma 4.2 we can obtain an overall discrepancy formula for the N sequence terms, N
sufficiently large:

N B’
Dy < WO + ﬁ Z (A’c"‘“‘l/2 + 40”5—’?/2> log? "1

B/, J
ng /2
+—N <Ac K + /2) log? ¢

We can weaken this bound slightly, in favor of economy of notation, by observing that
Npug, J < N, and the powers ¢ are monotonic in ¢, so that the following result is thereby
established (note that we allow ourselves to rename constants with previously used names
when such nomenclature is not ambiguous):

Lemma 4.7 For the (b, ¢, m,n)-PRNG sequence = = (z,,), the discrepancy is bounded
for sufficiently large N as

2 k-1

log
n /2
Dy(z) < <N0+Ac K1 —i—Bzcnk 1/2> i

nK/Q 1 )
nK
+ A e +BCnK/2 log” ¢

where iy = my, —my_1 and N is decomposed as N = g+ - -+ pux +J with J € [1, pr11],
with Ny, A, B constant.
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It is now feasible to posit growth conditions on the m, n sequences of our PRNGs such
that discrepancy vanishes as N — oco. One possible result is

Theorem 4.8 For the (b, ¢, m,n)-PRNG sequence x = (x) of Definition 4.1, assume that
the difference sequences up = myg — mp_1, vy = nx — ng_1 satisfy the following growth
conditions:
(i) (v) is nondecreasing,
(ii) There exists a constant v > 1/2 such that for sufficiently large k&
Pe o Pkl

"k V-1 ’

Then x is equidistributed and the number

> 1
Apemmn = mekcnk
k=1

is b-normal.

Proof. We bound contributions to the discrepancy bound of Lemma 4.7, using growth
condition (ii) as follows:

1 K-1 yng-r  onx-1/2

K
1 Mk
i = c—1/2 T enk-1/2 = onx ChK—L—1/2

Now

1 1
Y(nk —n-) + 5(”1( —nrx-1— (K- —NK-r-1)) > (7 — 5) L,

this last inequality arising from growth condition (i) and the fact that the nj are monotone
increasing with ny > 1. Thus

1 & 1 ( 1 )
Lyomo -
= ck—1/2 crr-1/2 \ 1 — cl/2—

Actually this component is the only problematic part of the discrepancy bound in Lemma
4.7, and we quickly write, now with more conveniently labeled constants Cj, and for
sufficiently large NV,

log? ¢«
cnK/2

log? ¢«
C”K('}’_l/2)

log? ¢™x—1
CnK_1/2

1 log2 K1
+ O —
K7 cnr—-1(7—1/2)

DN(ZL‘) < Cl +C4

+C3

+C5

Being as (log? z)/2¢ is, for any € > 0, eventually monotone decreasing as z — oo, it follows
that for sufficiently large N

log? ¢ -1

Dy(z) < O i

But this means Dy — 0 as N — 00, so z is equidistributed by Theorem 2.2(12). Theorem
3.1 then establishes the number oy ¢, as b-normal.
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As we have said, equidistribution of sequences x as in Theorem 4.8 would also follow
from simpler arguments involving the Weyl criterion. However, the discrepancy bound at
the end of the above proof is interesting in its own right. For certain choices of the m,n
sequences, such as m; = c¢*,n; = i, we can easily relate the index N to the ¢"¥-! to obtain
a discrepancy bound

log® N

il
Now such bounds (logarithmic numerator and square-root denominator) on classical
PRNGs have been obtained in brilliant fashion by Niederreiter (see [41], p. 1009, and
[42], pp. 169-170), who also gives arguments as to the best-possible nature of such
bounds in the classical PRNG contexts. It is thus no surprise that our exponent fac-
tor min(y — 1/2,1/2) at the end of the above proof cannot exceed 1/2 (however, we see
later in this section that other constructions of normals involved number-discrepancies of
somewhat lower magnitude).

The discrepancy approach, in yielding Theorem 4.8, leads us to specific classes of

normals:

DN(.I’) < C

Corollary 4.9 In what follows we assume an underlying (b, ¢, m,n)-PRNG and so b, ¢ > 1
are coprime.
(i) The generalized Stoneham numbers

1

ab,C - ZZZI Czbcl
are each b-normal.

(ii) The generalized Korobov numbers (d > 1):

1
ﬁb,c,d = Z dibcdi

i>1 C

are each b-normal.
(iii) For positive integers s < 2r, each of the numbers
3 1
= cir pets
is b-normal. So for example,
1
Z 81332

i>1

is 3-normal.

16



(iv) If integer d > \/c then each of
1

2

i>1
is b-normal. So for example,
y L
~ 3192
is 2-normal.

(v) If the integer-valued function f(7) is strictly increasing,
and f(i) — f(i — 1) is nondecreasing for sufficiently large n, then

3 1

=1 Cf(z) bcf (%)

is b-normal. So for example,
Z 1

-0 -2
=1 b

and
Z
i>1 Ci!bci!

are both b-normal.

Proof. Each of the results (i)-(v) follows easily from Theorem 4.8. For example, in case
(iv) we have d > /c so define § by d = ¢®+1/2 so that for a constant C,

LK CIC(6+1/2)K

CIMK - C’YK (1>

which, for v chosen between 1/2 and 1/2 4 §, is monotone increasing. The rest of the
results follow in similar fashion.

It is natural to ask whether a number ¢, associated with a (b, ¢, m,n)-PRNGs is
transcendental, which question we answer at least for some such numbers:

Theorem 4.11 Denote apcmn = Y1 1/(c™0™) where (b, ¢, m,n) are as in Definition
4.1 but without the restriction of coprimality. Let A = logb/logc and assume that for
some fixed § > 2 and sufficiently large K

N1+ AMgiq
ng + A\Mmg

J.

Then oy ¢ 1s transcendental.
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Remark. Some of the ay ..., appearing here are not in the class of b-normal constants
relevant to Theorem 4.8, because of the coprimality requirement for our defined PRNGs.
Conversely, some of the b-normals in question are not covered by Theorem 4.11; for
example, the assignments b = 3, ¢ = 2, ny, = k, my, = 2¥ yield a b-normal but the inequality
above involving ¢ fails (yet, the b-normal may well be transcendental; we are saying the
following application of the Roth theorem is not sufficient).

Proof. For simplicity denote & = & cm.n. The celebrated Roth theorem states [47] [15]
that if |P/Q — a| < 1/Q*" admits of infinitely many distinct rational solutions P/Q (i.e.
if v is approximable to degree 2 + € for some € > 0), then « is transcendental. Write

1

cripmi’

a = P/Q—i-z

>k

where ged(P, Q) = 1 with @ = ¢"™b™*. The sum over i gives
2

P41 hMe41

oo = P/Q)|

But the right-hand side is, by virtue of the §-inequality, less than 2/Q? and transcendency
follows.

Theorem 4.11 immediately repeats transcendency results on Stoneham and Korobov
numbers, such results having been known to both of those authors, except for the former
class when ¢ = 2, as explained in the above Remark.

For a different research foray, consider the problem of specifying an uncountable col-
lection of normals. One way to do this is surprisingly easy. In what follows we define the
bits of a real number according to the no-trailer rule: Any infinite trailer of 1’s is to be
removed via carry; e.g., 0.01111... — 0.1 in binary; and then when we ask for the k-th
bit of a real number in [0, 1) we shall mean the k-bit to the right of the decimal point.

Theorem 4.12 Let b, ¢ > 1 be coprime and for each real ¢ € [0,1) denote by t; the k-th
binary bit of t. Then the collection of numbers

1
alt) = P

i>0
is uncountable, and each is b-normal.

Remark. We are creating here what could be called “perturbed Stoneham numbers,”
yet we could just as easily perturb in this way other kines of normals.

Proof. That a(t) is always b-normal follows from Theorem 4.8—take v = 2/3, say, so
that the perturbation of adding ¢; to m; does not harm the required growth condition
(ii) of that Theorem. It remains to show that the «(t) are all pairwise distinct. Indeed,
let s > ¢, with the first occurrence of unequal corresponding bits between s and t being

18



Sk = 1,tk = 0. Then

1 1 1 1 1 1
a(t) —als) = % (1 - g) + 2; P (—CC% - —b+)
1>
1 1 1 1 1
> (=) [1- —
cK ch ( b) ( z>21:c ci—k bcl—ck)
> 0

Inasmuch as this construction is fairly straightforward, one wonders whether there be
other simple approaches. As a possible example, for the Champernowne Cg let (u) be
the ordered set of positions of 0’s, and likewise let (vg) be the set of positions of 1’s.
Clearly, by 10-normality of g, these two sets are infinite. Now, based on some real
number ¢ as was used in Theorem 4.12, either swap (when ¢, = 1) or do not swap the
(0,1) digit pair from respective positions (ux, vx) depending on the k-th bit of ¢. So for
t =0=0.000..., the Champernowne is left unchanged; while for any other real ¢ < 1, the
Champernowne is altered and may be 10-normal. We have not finished this argument; we
mention it only to note that there may be other means of constructing an uncountable
class of normal numbers.

Next we move to a computational issue: Can one efficiently obtain isolated digits of
Qpemn?! It turns out that at least the Stoneham number o, admits of an individual
digit-calculation algorithm, as was established for 7, log2 and some others in the orig-
inal Bailey-Borwein-Plouffe (BBP) paper [4] — the same approach works for the new,
b-normal and transcendental constants. Indeed, for oy . the BBP algorithm is extraordi-
narily rapid: the overall bit-complexity to resolve the n-th base-b digit of a . is

O(log® nloglog nlogloglog n),

which can conveniently be thought of as O(n¢). By comparison, the complexity for the
BBP scheme applied to fundamental constants such as 7 and log2 (in general, the con-
stants falling under the umbrella of Hypothesis A) is O(n'*¢). As a specific example, in
only 2.8 seconds run time on a modern workstation the authors were able to calculate
binary bits of a3, beginning at position one googol (i.e. 10'?). The googol-th binary
digit is 0; the first ten hexadecimal digits starting at this position are 2205896E7B. In
contrast, C. Percival’s recent resolution of the quadrillionth (10'°-th) binary bit of 7 is
claimed to be the deepest computation in history for a 1-bit result [45], finding said bit
to be 0 but at the cost of over 10'® CPU clocks.

At this point one might look longingly at the b-normality of a3, and wonder how
difficult it is to relax the constraint on summation indices in Y, ¢ 1/(nb") in order finally
to resolve logarithmic sums. Some relaxations of the set S C Zt may be easier than
others. We conjecture that

1

OZIZ@,
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where p runs through the set of Artin primes (of which 2 is a primitive root), is 2-normal.
It is a celebrated fact that under the extended Riemann hypothesis (ERH) the Artin-
prime set is infinite, and in fact—this may be important—has positive density amongst
the primes. We make this conjecture not so much because of statistical evidence, but
because we hope the fact of 2 being a primitive root for every index p might streamline
any analysis. Moreover, any connection whatever between the ERH and the present
theory is automatically interesting.

With these results in hand, let us sketch some alternative approaches to normality.
We have mentioned in our introduction some of the directions taken by Good, Korobov,
Stoneham et al. over the decades. Also of interest is the form appearing in [33, Theorem
30, p. 162], where it is proven that

_ - L))

n>1

is b-normal for any “completely uniformly distributed” function f, meaning that for every
integer s > 1 the vectors (f(n), f(n+1),... f(n+s)) are, asn = 1,2,3, .. ., equidistributed
in the unit s-cube. (Korobov also cites a converse, that any b-normal number has such
an expansion with function f.) Moreover, Korobov gives explicit functions such as

oo

fl@) = Y e*ah

k=0

for which the number o above is therefore b-normal. It is possible to think of some
normals as being “more normal” than others, in the sense of discrepancy measures. We
have seen that the normals of our Theorem 4.8 enjoy discrepancy no better than Dy (z) =

@) (log2 N/VN ), while on the other hand we know [38] that for almost all real z,

D ({(t)}) = O ((ngN)/) |

Yet, researchers have done better than this. Levin gives [38] constructions of normals
based on certain well-behaved sequences—such as quasi-Monte Carlo, low-discrepancy
sequences or Pascal matrices—and derives discrepancy bounds as good as

n log® N
Dyl =0 (5"
for k = 2, 3.
For another research direction, there is another exponential-sum result of Korobov
[33][Theorem 33, p. 171] that addresses the distribution of the powers (b, b3, ...0™)

modulo a prime power p’, but where m is significantly less than \/ord(b, p?). It may be

possible to use such a result to establish normality of numbers such as 3> 1/(p'd™) where
the m; have different growth conditions than we have so far posited via Theorem 4.8.
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One also looks longingly at some modern treatments of nonstandard exponential sums,
such as the series of papers [23][24][25], wherein results are obtained for power genera-
tors, which generators having become of vogue in cryptography. The manner in which
Friedlander et al. treat exponential sums—for their purposes the summands being such
as exp(2mig? /c)—is of interest not because of any direct connection to normality, but
because of the bounding techniques used.

5. PRINGs leading to density and irrationality proofs

Independent of number theory and special primes, one could ask what is the statistical
behavior of truly random points chosen modulo 1; for example, what are the expected
gaps that work against uniform point density?

In view of Definition 2.1(4) and Theorem 2.2(11), it behooves us to ponder the expected
gap-maximum for random points: If N random (with uniform distribution) points are
placed in [0, 1), then the probability that the gap-maximum Gy exceeds z is known to be
[30]

[1/x]
Prob(Gy > z) = Z: (7) (=1 (1 — o)V,

The expectation E of the gap-maximum can be obtained by direct integration of this
distribution formula, to yield:

B(Gr) = (N +1)+7)

where 9 is the standard polygamma function I''/T". Thus for large N we have

log N +~—1/2 1
B(Gw) T2 L 0()
log N
N

This shows that whereas the mean gap is 1/N, the mean mazimum gap is essentially
(log N)/N. In this sense, which remains heuristic with an uncertain implication for our
problem, we expect a high-order cascaded PRNG to have gaps no larger than “about”
(log P)/P where P is the overall period of the PRNG.

It turns out that for very specialized PRNGs we can effect rigorous results on the
gap-maximum Gp. One such result is as follows:

Theorem 5.1. Let 1 = e; < e; < e3 < ... < e, be a set of pairwise coprime integers.
Consider the PRNG with any starting seed (sy,. .., Sk):

251 252 25k
_ d
Tg = (2 (261_1+262_1...26k_1)>modl.

Then the generated sequence (x4) has period ejey - - - e and for sufficiently large N we
have

Gy < 3/2W/2
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Proof. Each numerator 27+% clearly has period e; modulo the respective denominator
2% — 1, so the period is the given product. The given bound on gaps can be established
by noting first that the behavior of the PRNG defined by

of —1 9k of — 1
LI v g e

as each f; runs over its respective period interval [0, e; — 1], is very similar to the original
generator. In fact, the only difference is that this latter form has constant offset > 1/(2% —
1) so that the maximum gap around the mod 1 circle is unchanged. Now consider a point
z € [0,1) and attempt construction of a set (f;) such that ys,) =~ z, as follows. Write a
binary expansion of z in the (non-standard) form:

1
Zz = ZZTn,

n=1
i.e., the b, denote the positions of the 1 bits of z. Now set f; = ¢; — b; for ¢ from k& down
to k — K + 1 inclusive. Using the following inequality chain for any real 0 < a < b > 1:

a 1 - a—1 - a
b b b—1 b’
it follows that we can find a PRNG value such that
2 LS|
2o

Jj=1

yiry — 2l <

€k—K+1

Attention to the fact that the e; are strictly increasing leads directly to the upper bound
3/2l%/2] on the maximum gap for the y, and hence the x generator.

Of course the maximum-gap theorem just exhibited is weaker than the statistical
expectation of the maximum gap, roughly (log E)/E where E' = e; - - - e, but at least we
finally have a rigorously vanishing gap and therefore, as we shall see, some digit-density,
hence irrationality results.

Though the previous section reveals difficulties with the PRNG approach, there are
ways to apply these basic ideas to obtain irrationality proofs for certain numbers of the
form

1

>

i

for integers m; and n;. A first result is based on our rigorous PRNG gap bound, from
Theorem 5.1, as:

Theorem 5.2. Let 1 = e; < e; < ... be a strictly increasing set of integers that are
pairwise coprime. Let (d;) be a sequence of integers with the growth property:

k k
dk+1 > H d; + H €;.
=1 =1
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Then the number:

> 1
xr = _—
'rnzzl 2d'm(2ern — ]_)
1 1

T Qh(a—1) ke —1)

is 2-dense and hence irrational.

Proof: Fix a k, define D = [[d;, E = [le;, and for 0 < g < F consider the fractional
part of a certain multiple of z:

2 1 1
29+D —
{ x} Z 2@1- _ 1 + — 26k _ ]_

=1 [

4T,

where f; = 297P=4i and error term |T| < 1/2%. By the Chinese remainder theorem,
we can find, in the stated range for g, a g such that the PRNG values of Theorem 5.1
are attained. Thus the maximum gap between successive values of the sequence {2"x}
vanishes as k — 00, so the sequence is dense by Theorem 2.2(11) and desired results
follow.

Of course there should be an alternative—even easy—means to establish such an
irrationality result. In fact, there are precedents arising from disparate lines of analysis.
Consider what we call the Erdés-Borwein number: The sum of the reciprocals of all
Mersenne numbers, namely:

> 1
E = E .
= 2r -1

This still-mysterious number is known to be irrational, as shown by Erdés [22] with a clever
number-theoretical argument. More recently, P. Borwein [9] established the irrationality
of more general numbers > 1/(¢" — r) when r # 0, using Pade approximant techniques.
Erdés also once showed that the sum of terms 1/(6,2%") is always irrational for any positive
integer sequence (b,,). Such binary series with reciprocal terms have indeed been studied
for decades.

The Erdés approach for the £ number can be sketched as follows. It is an attractive
combinatorial exercise to show that

Bo= Yy o=y
a=1b=1 n=1

where d(n) is the number of divisors of n (including 1 and n). To paraphrase the Erdés
method for our present context, consider a relevant fractional part:

{2"E} = <d(m2+ D + d(mQ:— 2) + d(mQj— 3) + .. ) mod 1
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What Erdds showed is that one can choose any prescribed number of succesive integers
k+1,k+2, ... k+ K such that their respective divisor counts d(k+1),d(k+2),...,d(k+K)
are respectively divisible by increasing powers 2, 22,23 ..., 2%; and furthermore this can
be done such that the subsequent terms beyond the K-th of the above series for {2"F}
are not too large. In this way Erdos established that the binary expansion of E has
arbitrarily long strings of zeros. This proves irrationality (one also argues that infinitely
many 1’s appear, but this is not hard). We still do not know, however, whether E is
2-dense. The primary difficulty is that the Erdos approach, which hinges on the idea that
if n be divisible by j distinct primes, each to the first power, then d(n) is divisible by 27,
does not obviously generalize to the finding of arbitrary d values modulo arbitrary powers
of 2. Still, this historical foreshadowing is tantalizing and there may well be a way to
establish that the £’ number is 2-dense.

As a computational matter, it is of interest that one can also combine the terms of
to obtain an accelerated series:

B = Z 271;12 Zm i_ 1
m=1

Furthermore, the E number finds its way into complex analysis and the theory of the
Riemann zeta function. For example, by applying the identity (*(s) = 3,51 d(n)/n®, one
can derive

— 2
B loglog 2 _/ L(s)¢ <S)dt,
log 2 2 Jr (log2)*

where R is the Riemann critical line s = 1/2 4 it. In this sophisticated integral formula
we note the surprise appearance of the celebrated Euler constant . Such machinations
lead one to wonder whether v has a place of distinction within the present context. A
possibly relevant series is [6]

© 1
= Lo

k

()

If any one of our models is to apply, it would have to take into account the fairly slow
convergence of the j sum for large k. (After & = 1 the j-sum evidently approaches 1
from above.) Still, the explicit presence of binary powers and rational multipliers of said
powers suggests various lines of analysis. In particular, it is not unthinkable that the
J-sum above corresponds to some special dynamical map, in this way bringing the Euler
constant into a more general dynamical model.

It is of interest that a certain PRNG conjecture addresses directly the character of the
expansion of the Erdés-Borwein number.

-1

Conjecture 5.3 The sequence given by the PRNG definition

<zd: 2d_1> Zd:2dmodl~::_1
Tq = mod 1 = ( 7> mod 1
=2k -1 2k — 1

k=1
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is equidistributed.

Remark. One could also conjecture that the sequence in Conjecture 5.3 is merely dense,
which would lead to 2-density of E.

This conjecture leads immediately, along the lines of our previous theorems pertaining
to specially-constructed PRNGs, to:

Theorem 5.4. The Erdos-Borwein number F is 2-normal iff Conjecture 5.3 holds.

Proof. For the PRNG of Conjecture 5.3, we have

1
Tq = (2d—1)(E—Z . )modl,
— 27 — 1
j>d
so that

{za} = {{2'E} +{-E-1+ta}},
where t; — 0. Thus {2?E} is equidistributed iff (z,,) is, by Theorem 2.2(10).

We believe that at least a weaker, density conjecture should be assailable via the kind
of technique exhibited in Theorem 5.1, whereby one proceeds constructively, establishing
density by forcing the indicated generator to approximate any given value in [0, 1).

P. Borwein has forwarded to us an interesting observation on a possible relation be-
tween the number F and the “prime-tuples” postulates, or the more general Hypothesis
H of Schinzel and Sierpinski. The idea is — and we shall be highly heuristic here — the
fractional part d(m + 1)/2 + d(m + 2)/2% + - - - might be quite tractable if, for example,
we have

m+1 = P,
m4+2 = 2po,
m+n = np,

at least up to some n = N, where the p; > N are all primes that appear in an appropriate
“constellation” that we generally expect to live very far out on the integer line. Note that
in the range of these n terms we have d(m + j) = 2d(j). Now if the tail sum beyond
d(m + N) /2" is somehow sufficiently small, we would have a good approximation

(2"E} ~ d(1)+d(2)/2+ - = 2E.

But this implies in turn that some iterate {2 E} revisits the neighborhood of an earlier
iterate, namely {2F}. It is not clear where such an argument—especially given the
heuristic aspect—should lead, but it may be possible to prove 2-density (i.e. all possible
finite bitstrings appear in £) on the basis of the prime k-tuples postulate. That connection
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would of course be highly interesting. Along such lines, we do note that a result essentially
of the form: “The sequence ({2™E}) contains a near-miss (in some appropriate sense)
with any given element of ({nE})” would lead to 2-density of E, because, of course, we
know FE is irrational and thus ({n£}) is equidistributed.

6. Special numbers having “nonrandom” digits

This section is a tour of side results in regard to some special numbers. We shall
exhibit numbers that are b-dense but not b-normal, uncountable collections of numbers
that are neither b-dense nor b-normal, and so on. One reason to provide such a tour is
to dispel any belief that, because almost all numbers are absolutely normal, it should
be hard to use algebra (as opposed to artificial construction) to “point to” nonnormal
numbers. In fact it is not hard to do so.

First, though, let us revisit some of the artificially constructed normal numbers, with
a view to reasons why they are normal. We have mentioned the binary Champernowne,
which can also be written

> n

n=1

where the indicated exponent is:
F(n) = n+> [log, k.
k=1

Note that the growth of the exponent F'(n) is slightly more than linear. It turns out
that if such an exponent grows too fast, then normality can be ruined. More gener-
ally, there is the class of Erdés-Copeland numbers [17], formed by (we remind ourselves
that the (-) notation means digits are concatenated, and here we concatenate the base-b
representations)

a = 0.(ar)p(ag)p- -

where (a,) is any increasing integer sequence with a,, = O(n'*¢), any € > 0. An example
of the class is

0.(2)(3)(5)(M(A)(A3)(17) - 10,

where primes are simply concatenated. These numbers are known to be b-normal, and
they all can be written in the form Y G(n)/b"™ for appropriate numerator function G
and, again, slowly diverging exponent F'. We add in passing that the generalized Mahler
numbers (for any g,b > 1)

My(g) = 0.(9")s(g (g - -

are known at least to be irrational [43], [55], and it would be of interest to establish
perturbation sums in regard to such numbers. Incidentally, it is ironic that some of the
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methods for establishing irrationality of the M,(g) are used by us, below, to establish
nonnormality of certain forms.

We have promised to establish that

a = > n/ "
n>1

is 2-dense but not 2-normal. Indeed, in the n2-th binary position we have the value n,
and since for sufficiently large n we have n? — (n — 1)? > 1 + log, n, the numerator n at
bit position n? will not interfere (in the sense of carry) with any other numerator. One
may bury a given finite binary string in some sufficiently large integer n (we say buried
because a string 0000101, for example, would appear in such as n = 10000101), whence
said string appears in the expansion. Note that the divergence of the exponent n? is a key
to this argument that « is 2-dense. As for the lack of 2-normality, it is likewise evident
that almost all bits are 0’s.

Let us hereby consider faster growing exponents, to establish a more general result,
yielding a class of b-dense numbers none of which are b-normal. We start with a simple
but quite useful lemma.

Lemma 6.1 For polynomials P with nonnegative integer coefficients, deg P > 0, and for
any integer b > 1, the sequence

({log, P(n)} :mn=1,2,3,...)
is dense in [0, 1).
Proof. For d = degP, let P(z) = agz’ + ... + ap. Then log, P(n) = log,aqs +
d(logn)/logb + O(1/n). Since logn = 1+ 1/2+1/3+ ...+ 1/n —~ + O(1/n?) di-

verges with n but by vanishing increments, the sequence ({d(logn)/logb}) and therefore
the desired ({log, P(n)}) are both dense by Theorem 2.2(10).

Now we consider numbers constructed via superposition of terms P(n)/b?™ with a
growth condition on P, Q:

Theorem 6.2 For polynomials P, () with nonnegative integer coefficients, deg () > deg P >
0, the number

= 2

n>1

P(n)
pR(n)

is b-dense but not b-normal.

Proof. The final statement about nonnormality is easy: Almost all of the base-b digits
are 0’s, because log, P(n) = o(Q(n) — Q(n — 1)). For the density argument, we shall
show that for any r € (0,1) there exist integers Ny < Ny < ... and di,ds,... with
Q(N;_1) < dj < Q(N;), such that

lim {b%a} = 7.

J—00
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This in turn implies that ({¢%a}) : d = 1,2,...}) is dense, hence « is b-dense. Now for
any ascending chain of IV; with N, sufficiently large, we can assign integers d; according
to

QN;) > dj = Q(N;) +log,r —log, P(N;) +6; > Q(N;-1)
where §; € [0,1). Then
P(N;) /bW =di = 90

However, ({log, P(n)}) is dense, so we can find an ascending N;-chain such that lim §; = 0.
Since d; < Q(N;) we have

k>0

{blia} = (b(’fr + Y P(N; + k) /bQWﬁk)_da') mod 1

and because the sum vanishes as j — o0, it follows that « is b-dense.

Consider the interesting function [36], p. 10:

flx) = i Lnz]

2n

The function f is reminiscent of a degenerate case of a generalized polylogarithm form—
that is why we encountered such a function during our past [5] and present work. Regard-
less of our current connections, the function and its variants have certainly been studied,
especially in regard to continued fractions [19] [20] [36] [10] [39] [7] [1] [11], [12]. If one
plots the f function over the interval x € [0, 1), one sees a brand of “devil’s staircase,” a
curve with infinitely many discontinuities, with vertical-step sizes occurring in a fractal
pattern. There are so many other interesting features of f that it is efficient to give an-
other collective theorem. Proofs of the harder parts can be found in the aforementioned
references.

Theorem 6.3 (Collection) For the “devil’s staircase” function f defined above, with
the argument z € (0, 1),

1. f is monotone increasing.
2. f is continuous at every irrational x, but discontinuous at every rational x.

3. For rational x = p/q, lowest terms, we have

1 > 1

but when z is irrational we have the same formula without the 1/(27 — 1) leading
term (as if to say ¢ — 00).
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4. For irrational x = l[ay,aq,as,...], a simple continued fraction with convergents
(Pn/Gn), we have:

Fx) = [A1, As Ay, ...

where the elements A,, are:

2anQn—1 _ 1
. dn—2
Ay = 2t

Moreover, if (P,/Q,) denote the convergents to f(x), we have
Qn = 2 — 1,

5. f(z) is irrational iff x is.

6. If x is irrational then f(x) is transcendental.

7. f(z) is never 2-dense and never 2-normal.

8. The range R = f([0,1)) is a null set (measure zero).

9. The density of 1’s in the binary expansion of f(z) is x itself; accordingly, f~!, the
inverse function on the range R, is just 1’s density.

Some commentary about this fascinating function f is in order. We see now how f can
be strictly increasing, yet manage to “completely miss” 2-dense (and hence 2-normal)
values: Indeed, the discontinuities of f are dense. The notion that the range R be a null
set is surprising, yet follows immediately from the fact that almost all z have 1’s density
equal to 1/2. The beautiful continued fraction result allows extremely rapid computation
of f values. The fraction form is exemplified by the following evaluation, where x is the
reciprocal of the golden mean and the Fibonacci numbers are denoted Fj:

far) = f(l ~ ﬁ>

= [2fo 21 of2 ]
1

1
1+2+ T
2 T

itz

It is the superexponential growth of the convergents to a typical f(z) that has enabled
transcendency proofs as in Theorem 6.2(6).
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An interesting question is whether (or when) a companion function

g9(z) = i{n—m}

on
n=1
can attain 2-normal values. Evidently

g(x) = 2z — f(x),
and, given the established nonrandom behavior of the bits of f(z) for any z, one should
be able to establish a correlation between normality of x and normality of g(x). One
reason why this question is interesting is that g is constructed from “random” real values
{nz} (we know these are equidistributed) placed at unique bit positions. Still, we did
look numerically at a specific irrational argument, namely

1
Z on(n+1)/2

n>1

Tr =

and noted that g(z) almost certainly is not 2-normal. For instance, in the first 66,420
binary digits of g(x), the string ’010010” occurs 3034 times, while many other length-6
strings do not occur at all.

7. Conclusions and open problems

Finally, we give a sampling of open problems pertaining to this interdisciplinary effort:

e We have shown that for (b, ¢, m,n)-PRNG systems, each associated constant au , m ,—
under the conditions of Theorem 4.8—is b-normal. What about c-normality of such
numbers for ¢ not a rational power of b?

e The generalized Stoneham numbers (case (i) of Corollary 4.9) might be generalizable
in the following way: Instead of coprimality of b, ¢, just specify that neither integer
divides the other. Can a result on b-normality then be effected? Presumably one
would need some generalization of the exponential-sum lemmas.

e We have obtained rigorous results for PRNGs that either have a certain synchro-
nization, or have extremely small “tails.” What techniques would strike at the in-
termediate scenario which, for better or worse, is typical for fundamental constants;
e.g., the constants falling under the umbrella of Hypothesis A?

e What are the fundamental connections between normality theory and automated
sequences (for an excellent survey of the latter, see [2])?7 We have talked—albeit
heuristically—about unnatural vs. natural constructions. Perhaps there are elegant,
undiscovered ways to create new normals via automatic rules.

e Does polynomial-time (in logn) resolution of the n-th digit for our oy and similar
constants give rise to some kind of “trap-door” function, as is relevant in crypto-
graphic applications? The idea here is that it is so very easy to find a given digit
even though the digits are “random.” (As in: Multiplication of n-digit numbers
takes polynomial time, yet factoring into multiples is evidently very much harder.)
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